







# MEHMET SITKI MERDİVENCİ

6<sup>th</sup> EMship cohort: October 2015 – February 2017

# Design and Optimization of Composite Base Frames & Shaft of Wind Turbine for Catamaran

Supervisor: Prof. Hervé Le Sourne, L'Institut Catholique d'Arts et Métiers, Nantes, France

Reviewer: Prof. Robert Bronsart , University of Rostock, Rostock, Germany

EMShip Meeting ,Rostock, February 2017













#### Contents

- 1. History of the Boat
- 2. Main objectives of the study
- 3. Presentation of Wind Turbine and Its Finite Element Model
- 4. Parametric Study of Composite Fixed Shaft
- 5. Static and Dynamic Analysis of Entire Optimized Model
- 6. Investigation of a Damping Material Selection
- 7. Comparison between Experimental and Numerical Results
- 8. Conclusions
- 9. Future Work

Introduction

#### **Energy** Observer





Master Thesis, Rostock , February 2017

## 1. History of The Boat

## Formule Tag (1983)



- 24 m long
- Jules Verne Trophy 75 days (1994)

Mehmet Sitki Merdivenci, 6th EMSHIP cohort: 2015 - 2017 4 of 19

Design and Optimization of Composite Base Frames & Shaft of Wind Turbine for Catamaran

#### 2. Main objectives of the study

 Design & Structural Analyzes of Vertical Axis Wind Turbine and Its Support



 Investigation of damping material selection





#### 3. Presentation of Wind Turbine and Its Finite Element Model

#### Aerojoules



#### Adaptation of Aerojoules to Energy Observer

- Designing an Appropriate Support
- Using composite shaft





## 3. Presentation of Wind Turbine and Its Finite Element Model



#### **Expected Minimum Bending Natural Frequency**

Maximum Rotation of Turbine : 300 RPM Frequency = n(blades) x RPM / 60  $3 \times 300$  RPM / 60 = 5 RPS  $5 \times 3 = 15$  Hz



# 3. Presentation of Wind Turbine and Its Finite Element Model (Modifications)



1st Bending Mode : 11,6 Hz 2nd Bending Mode : 11,7 Hz



1st Bending Mode : 10,9 Hz 2nd Bending Mode : 11,3 Hz



1st Bending Mode : 11,9 Hz 2nd Bending Mode : 12,2 Hz



1st Bending Mode : 12,1 Hz 2nd Bending Mode : 12,4 Hz

Mehmet Sitki Merdivenci, 6th EMSHIP cohort: 2015 - 2017 8 of 19

Master Thesis, Rostock, February 2017

#### 4. Parametric Study of Composite Fixed Shaft

- Carbon epoxy composite material
- 80 mm of external diameter
- Same behavior as Aerojoules



| Thickness<br>(mm) | 1 <sup>st</sup> Mode<br>Frequency (Hz) | 2 <sup>nd</sup> Mode<br>Frequency (Hz) | 3 <sup>rd</sup> Mode<br>Frequency(Hz) | Stacking Sequence                                            |
|-------------------|----------------------------------------|----------------------------------------|---------------------------------------|--------------------------------------------------------------|
| 16                | 9<br>(180 rpm)                         | 9,2<br>(184 rpm)                       | 16<br>(320 rpm)                       | ([-30,0,30,0] <sub>4</sub> ,[45,0-45,0]) <sub>s</sub>        |
| 16                | 9,1<br>(182 rpm)                       | 9,3<br>(186 rpm)                       | 16<br>(320 rpm)                       | ([-30,0,30,0] <sub>5</sub> ) <sub>s</sub>                    |
| 24                | 9,6<br>(192 rpm)                       | 10<br>(200 rpm)                        | 16,5<br>(330 rpm)                     | ([-30,0,30,0] <sub>6</sub> , -30,0,[45,0-45,0]) <sub>s</sub> |
| 24                | 9,7<br>(194 rpm)                       | 10<br>(200 rpm)                        | 16,5<br>(330 rpm)                     | ([-30,0,30,0] <sub>7</sub> , -30,0) <sub>s</sub>             |

#### 5. Static and Dynamic Analysis of Entire Optimized Model



9.1 Hz (182 RPM) RPM)

9.3 Hz (186 RPM) 9 Hz (180

#### 5. Static and Dynamic Analysis of Entire Optimized Model





 Less than 25 % of Elastic limit

144 MPa 1st Layer 121 MPa 3rd layer



Carbon composite with viscoelastic material

Mehmet Sıtkı Merdivenci, 6th EMSHIP cohort: 2015 - 2017 12 of 19

Master Thesis, Rostock, February 2017







- 3 different type of samples:
- 0 layer of DYAD
- 2 layers of DYAD
- 4 layers of DYAD



#### **Flexion 3 points**







EoD = 72 GPa E2D = 1,3 GPa E4D = 0,33 GPa

Shear Modulus of DYAD: T = 0,33 Mpa (Steel = 70000 MPa)

#### Frequency Response Analyses Experiment





| Samples | 1st Natural<br>Frequencies |
|---------|----------------------------|
| 0D      | 58.9 Hz                    |
| 2D      | 55.1 Hz                    |
| 4D      | 52 Hz                      |

# 7. Comparison between Experimental and Numerical Results2D Sample

First Bending Mode at 53.5 Hz



| Samples | 1st Natural<br>Frequencies |
|---------|----------------------------|
| 0D      | 58.9 Hz                    |
| 2D      | 55.1 Hz                    |
| 4D      | 52 Hz                      |

#### Torsion Mode at 86.3 Hz





Design and Optimization of Composite Base Frames & Shaft of Wind Turbine for Catamaran

# 7. Comparison between Experimental and Numerical Results Experimentally





Mehmet Sıtkı Merdivenci, 6th EMSHIP cohort: 2015 - 2017 17 of 19

Master Thesis, Rostock , February 2017

#### 8. Conclusions

- Using more composite layers or having an interior structure of a composite support does not increase sufficiently the stifness of entire system and consequently the first natural frequency.
- Implemented viscoelastic material increases the damping characteristics of carbon epoxy composites, however it causes a significant decrement on Young's modulus.

#### 9. Future Work

Perforation of small holes on DYAD 601 (Pan & Zhang 2009)





Thank you.

Mehmet Sitki Merdivenci, 6th EMSHIP cohort: 2015 - 2017 19 of 19

Master Thesis, Rostock , February 2017